
ToolBook as a component: the place of ToolBook in the software toolkit.

Patricia Paterson, Roger Beresford, John Rosbottom
Department of Information Science

University of Portsmouth
Milton Campus

Southsea
Hampshire, PO4 8JF

E-mail: Patersonp@uk.ac.port.cv
Beresfordra@uk.ac.port.cv
Rosbottomj@uk.ac.port.cv

Abstract

When treated as a component in an integrated environment, ToolBook becomes an
important resource in the software toolkit. In this paper, we examine the following uses
of ToolBook:-

• as a component of a communications software interface.
• as a component of an open model for hypermedia with dynamic linking.
• as a component of a larger software design tool.
• as a component within an expert system learning environment.

We consider the ways in which it is possible to communicate between different
packages by using the facilities of Dynamic Data Exchange (DDE), Object Linking and
Embedding (OLE) and sharing resources using Dynamic Link Libraries (DLLs)

We examine how ToolBook makes use of these facilities in certain specific instances, and
with what degree of success.

To illustrate the use of the underlying communications paradigm, we refer in detail to the
following applications designed and implemented using ToolBook at the University of
Portsmouth-

• A guide to the Joint Academic Network (JANET) which offers learning and
reference material and automatic connection to JANET services.

• A partner to Microcosm, another hypermedia package developed at the University
of Southampton DECS taking advantage of the strengths of each package.

• Tutorial and advice modules within a Designer Support Package developed as part
of the EC RACE GUIDANCE project.

• A tutorial component and good interface in association with an expert system
implemented in XiPlus.

ToolBook as a component: the place of ToolBook in the software toolkit

Introduction

Asymetrix describe ToolBook as "a Software Construction Set for Windows". There are
basically two things that one can do with any construction set. Firstly, one may treat it as
a closed environment and use it to build applications which are self contained. For
example, one may build models made entirely of Lego bricks or Meccano strips, and play
with them in isolation. Alternatively, one may use the elements of the construction set to
build units which themselves then become part of wider, open applications. The Lego or
Meccano-based model may be a ride or side-show in a fairground, or the model engine
may be used to drive rides on a fairground made of an entirely different material.

It is in this second way of using a construction set that we are interested; namely, the use
of ToolBook as a component of, or interface to, another package. When treated as a
component in an integrated environment, ToolBook becomes an important resource in the
software toolkit. In this paper, we examine the following uses of ToolBook:-

• As a component of a communications software interface.
• As a component of an open model for hypermedia with dynamic linking.
• As a component of a larger software design tool.
• As a component within an expert system learning environment.

Communicating with Windows

Microsoft Windows is a graphically oriented multi-tasking operating system for the IBM
PC. It allows the user to run a number of programs, or applications, concurrently, each
within its own area of the screen, or "window". The user manipulates the software by
operating through the relevant window or windows. Windows also provides menus by
which commands may be issued to the relevant applications, and dialogue boxes allow
the application to communicate directly with the user when prompting for information.
The user can move easily between applications, and data can be transferred from one
application to another by making use of the traditional clipboard cut-and-paste methods.

There is also a message-passing protocol, Dynamic Data Exchange (DDE), which allows
inter-application communication and transfer of information. Using DDE, a modification
in one application results in automatic updating of any associated applications which use
the same information. Recent developments of the windows environment, specifically
Windows for Workgroups, mean that the exchange of data and command messages is
feasible between instances of compatible software on different computers connected to a
Local Area Network. This extension to the basic Clipboard and DDE facility is
significant and if fully exploited will lead to a wide range of composite applications,
(Lent, 1993).

A DDE conversation occurs when two or more applications or instances of applications
pass messages back and forth. The messages are initiated by a client instance, which may
request data exchange or request command execution. A server application or instance
responds to requests, and either server or client may terminate the conversation.

DDE supports both permanent and temporary exchanges of information. Temporary
exchanges are simple transactions and are known as cold links. The two types of
permanent exchange are known as warm links and hot links. With warm links, the sender
tells the receiver that new information exists but does not transmit it until told to do so.
With hot links, information flows whenever the sender has something new to transmit.
(Hardaker, 1993)

OpenScript, ToolBook's programming language, provides DDE-support commands and
messages to allow ToolBook to act as the client or server in a DDE conversation, or even
both, as when multiple instances of ToolBook are running, but it does not support DDE
Advise protocol, which establishes permanent hot links between applications, and enables
the same data to be held by automatically by both applications.

A DDE-event command or message is sent when information is exchanged between
applications or instances, and the word Remote is an essential component of the relevant
ToolBook OpenScript statement. For example, when ToolBook is the DDE client,
getRemote, setRemote and executeRemote commands communicate with the server
application. If a DDE channel is not currently open, ToolBook automatically sends the
message WM_DDE_INITIATE to open a channel to the server. The channel will
normally remain open until ToolBook has executed all pending handlers (groups of
statements with a common purpose), as, for example, when a user turns a page. The
default behaviour is then for ToolBook to close the channel by automatically sending the
WM_DDE_TERMINATE message, but this can be altered by using the keepRemote
command. DDE is useful but can be complicated to set up. DDE links are fragile, and in
order to maintain a link, one application must store the complete path of another's
document. Reorganising a hard disk or e-mailing to someone with different directory
structures causes problems.

A more advanced form of information exchange is implemented via Object Linking and
Embedding (OLE). The main objective of this development is data or document
integration. For example, suppose one is running both a word processor, such as Word,
and a spreadsheet, such as Excel, at the same time, and that a table from Excel forms part
of a Word document. In the current implementation of OLE, a single click on the Excel
table selects it for repositioning or resizing; a double click on the table activates the Excel
application for use. In the next version, (OLE 2.0) still under development by Microsoft,
double-clicking on the table will activate the Excel application within the word processor;
the menubar changes to display Excel rather than Word menu items and updating takes
place within the environment of the word processor. If, in turn, the spreadsheet table
should contain a graphic from a drawing application, it would be possible to tunnel
through the document rather than activating external windows (Schatzman,1993).

If this functionality is supported within ToolBook, it will open the way to an extremely
interesting range of uses of ToolBook as a component of other applications.

Windows also supports Dynamic Link Libraries (DLLs) which are separate files written
in C, Pascal or assembly language, that contain functions which Windows applications
can use to share code and resources. Windows itself consists largely of Dynamic Link
Libraries (DLLs) and these can be used to extend the capabilities of ToolBook. For
example, it is possible to link to a DLL and call its functions to perform tasks not
available in OpenScript, such as driving sound or keyboard devices. DLLs can also
intercept and translate Windows messages to execute OpenScript statements, and they
can send Windows messages from other applications to execute or evaluate OpenScript
statements. ToolBook uses Windows DLLs to perform actions such as activating
windows and displaying dialogue boxes, whose appearance and behaviour are controlled
by functions in the appropriate DLL rather than through scripts and properties.

ToolBook as a component of a communications software interface

JANET stands for Joint Academic NETwork, which is a private Wide Area Network
(WAN) that interconnects local computer networks in Research Councils, Universities,
Colleges of Higher Education and other parts of the academic community in the UK.
JANET currently runs the Coloured Book protocols over an X.25 packet switch network.
It is connected to the public packet switched networks in the UK and hence, via the
Internet, to academic networks throughout the world. By its nature, it is a large and
complicated network, and new or casual users often find it very confusing. A guide to
using JANET that provides both a reference source and a tutorial, as well as the potential
for automated access to the relevant communications network is highly desirable. This
section describes such a guide, under development by the University of Portsmouth. The
first prototype was produced as a final year BSc project. (Fosker, 1993)

The JANET guidebook, displayed in ToolBook, consists of four main sections. These
contain information about how to use the Guide, an introduction to JANET, details of
Services available with automatic access and a Glossary.

At present, access to JANET within the University of Portsmouth is via a dumb terminal
or via a PC running a communications package which makes the PC appear to be a dumb
terminal. The University of Portsmouth uses a VAX (which is called CSOVAX under the
JANET name registration scheme) as a mailserver. ToolBook was used to provide the
reference source and the tutorial, and to act as an easy to use front-end to the JANET
services via the communications package. Crosstalk for Windows was chosen as the
communications software because it is a full Windows application, supports Windows
DDE and has a high level script language that allows Crosstalk to perform functions such
as automatic logging on to a remote computer.

The Crosstalk for Windows scripting language is based on the Crosstalk Application
Script Language (CASL). Crosstalk scripts are usually created using the Windows
Notepad editor, but any editor capable of outputting plain ACSII text may be used.

Crosstalk scripts are given the .XWS file extension. A script compiler checks the script
and outputs a new compiled version with the file extension .XWC. Only this version of
the file is needed to run the script.

The JANET Guide ToolBook interacts with Crosstalk using Windows DDE. Crosstalk
provides a powerful example of Windows DDE but its implementation and use differ
slightly from that of ToolBook. For example, when initiating a DDE conversation from
Crosstalk, one must first declare the integer variable dde_channel and then use the
DDEINITIATE command, as in the example below, so that a DDE channel may be
assigned to the conversation.

INTEGER dde_channel
DDEINITIATE dde_channel,"TOOLBOOK","SYSTEM"

This process, which is automatic in ToolBook, is further illustrated in example scripts
later in this paper.

When the user loads the JANET Guide ToolBook, the book automatically loads Crosstalk
using the OpenScript run command. This script also requests that Crosstalk run the
INITIAL.XWS Crosstalk script that causes Crosstalk to drop any connections that it may
have and minimise its window. However, the majority of the interaction between
Crosstalk and ToolBook occurs when the user requests the JANET guide to connect to a
remote computer service via the service selection buttons on the relevant ToolBook page.
The following scripts show the interaction between ToolBook and Crosstalk when using
the National Information on Services and Software (NISS)
Gateway service.

a) Script to connect user to the NISS Gateway service: ToolBook is the client
application and uses Remote commands as described earlier in this paper. The
system responds to a click on the NISS Gateway button by loading the NISS
module, transferring across information on user id and password obtained earlier in
the ToolBook session, and then running the module.

to handle buttonUp
hide group "NISS"
show field "hold on"

--Communicates with Crosstalk via DDE
executeRemote "[bye]" application "XTALK" topic "SYSTEM"
executeRemote "[Load(NISS)]" application "XTALK" topic "SYSTEM"

setRemote "USERID" to text of field "username" of page "password"
application "XTALK" topic "SYSTEM"
setRemote "PASSWORD" to text of field "password" of page "password"
application "XTALK" topic "SYSTEM"
executeRemote "[go]" application "XTALK" topic "SYSTEM"

executeRemote"[execute(NISS)]" application "XTALK" topic "SYSTEM"

hide field "hold on"
show group "NISS"
end buttonUp

b) Script that Crosstalk loads and runs as requested by the given OpenScript example:
It maximises the Crosstalk window and then communicates with the CSOVAX by
mimicking a user typing commands at the terminal. The script automatically logs
the user into the CSOVAX using the variables passed to it by the DDE conversation
with ToolBook. When it has logged the user into the NISS gateway service, it waits,
checking to see if the user has finished with the NISS system. Then it
automatically loads and runs the logoff script ready for implementation when the
user has finished.

LABEL CALLPAD
MAXIMISE

LABEL WAKEUP
REPLY "|"
REPLY "|"

LABEL LOGON
WAIT FOR 'ETHERPAD'
WAIT 2 TICKS
REPLY "call csovax"
WAIT FOR 'Username'
REPLY USERID
WAIT FOR 'Pass'
REPLY PASSWORD

LABEL PAD
WAIT FOR 'CSO $'
WAIT 2 TICKS
REPLY "pad call uk.ac.niss"
WAIT FOR 'Terminal type?'
REPLY "vt200"

LABEL LOGOFF
CHAIN "LOGOFF"
END

c) Script that Crosstalk uses to logoff from the network and return user to ToolBook:
Crosstalk is the client application and ToolBook is the server application. The
logoff script waits for the user to finish using the remote service and return to the
CSOVAX prompt CSO $. It then issues the VAX VMS command logoff, drops the
connection to the CSOVAX and minimises the Crosstalk window. As noted earlier,
the DDE channel has to be explicitly activated in Crosstalk.

LABEL LOGOFF
WAIT FOR 'CSO $'
REPLY "LOGOFF"
WAIT FOR '*** Cleared'
BYE
MINIMISE
INTEGER dde_channel
DDEINITIATE dde_channel,"TOOLBOOK","SYSTEM"
DDEEXECUTE dde_channel,"get bringWindowToTop(sysWindowHandle)"

END

The application as implemented was satisfactory as a prototype, but the main problem
inherent in the present design is that all details are encoded in developed software. It
does not support easy customisation for different environments, in that the links are
program- defined, rather than user defined, and require access to both ToolBook and
Crosstalk code. Thus, problems with fragile links are encountered. Further work currently
being undertaken seeks to build on the prototype and to make the specific links generic
under the control of the user.

ToolBook as a component of an open model for hypermedia with dynamic linking

In order to circumvent some of the problems engendered when linking applications with
code embedded within the actual programs, it is possible to utilise the clipboard to set up
and maintain links. One approach to managing the problem of a multiplicity of
applications is illustrated by the use Microcosm makes of DDE, (Fountain et al, 1990).

Microcosm is an open model for hypermedia, under development at the University of
Southampton, which provides a platform which should enhance the capabilities and
usability of a hypermedia system. It was designed to overcome some of the problems
common to many current hypermedia systems, including the authoring effort involved in
inserting links into documents, problems with read-only media such as CD-ROMs, and
difficulties withproprietary document formats that often make it impossible to take
documents from one system and use them in another. Also, most hypermedia systems are
closed, and additional drivers which may be added to extend the system are not bi-
directional in the sense of being able to make links back into the hypermedia program.

In essence, Microcosm makes it possible to browse through large bodies of multimedia
information or to add links and further information to the system. Documents may be of
many different types, such as text, video, graphics, sound, and one of the most important
new concepts is that no information about links is held in the document data files
themselves. Instead, there is a separate links database which holds all the information
referring to links. There may be several linkbases associated with a set of
hyperdocuments. This allows for the provision of both public linkbases for general

access, as may be provided by the original author, and private linkbases as generated by
the individual user. The private linkbase is analogous to pencil notes in the margin of a
book.

There are three levels of generality of link sources: generic links, where the user may
follow the link after selecting the given anchor at any point in any document; local links,
where the user may follow the link after selecting the given anchor at any point in the
current document; and specific links, where the user may follow the link only after
selecting the anchor at a specific location in the current document. Specific links may be
made into buttons, as with ordinary hypermedia.

Generic links are of particular interest here. When a new document is created, the author
will have access to all the generic links that have already been defined for the system.
Links may be to processes as well as to documents, and any Windows application where
it is at least possible to select objects and copy them to the clipboard is a candidate for
Microcosm.

The DDE (Dynamic Data Exchange) message passing protocol used by Windows was
found to meet the requirements of Microcosm. Using the DDE capabilities, the generic
link facility can be extended to any application running in the same environmment.
Applications integrate into Microcosm in this way include ToolBook, Guide, Superbase
and Word, and in theory there is no limit to the number and type of application that can
be integrated in this way.

ToolBook as a component of a larger software design tool

Software engineering is the term usually applied to the design and building of large
software systems that are built by teams of people rather than by individuals, uses
engineering principles and which may contain both technical and non-technical aspects
(Sommerville, 1989). Various tools exist to help designers, including graphical design
editors, text processors, communications software, testing and debugging tools and
project management tools. These often complicated tools themselves usually contain
further help for the software designer and builder. It is the use of ToolBook as a
component of a new software design tool that we now consider.

GUIDANCE stands for "Generic Usability Information for the Design of Advanced
Network Communications in Europe" and is part of the RACE programme for Research
and Development of Advanced Communication in Europe. The GUIDANCE project
(RACE 1067) involves a new user-centred methodology, the Enabling States approach
(Whitefield et al, 1992) and close attention to usability principles is an essential
component.

A new software tool, the Designer Support Package (DSP), has been developed as part of
the project (May et al, in press). Current implementation has resulted in the development
of three strands of the DSP: support for the GUIDANCE method itself (the Design

Environment), support for accessing the usability principles (the Principles
hyperdocument) and support for learning how to use the GUIDANCE method (the
Tutorial).

The Design Environment allows the user to construct a task model of the application,
automatically generates the necessary tables which are part of the methodology and
provides full navigational support between the tables, task model and reference materials.
The Principle hyperdocument and the Tutorial were prototyped as separate ToolBook
books able to be called up at will from the Design Environment.

The Principles hyperdocument contains full definitions and descriptions of the twelve
generic usability principles as identified by the GUIDANCE project. These are:
Compatibility, Coherence (Consistency), Simplicity, Redundancy, Salience, Reversibility,
Transparency, Completeness, Controllability, Flexibility, Feedback and Support
Orientation. Research suggests Compatibility should have a higher priority than
Coherence (Consistency), (Wang, 1992) and that, together with Simplicity, application of
these three usability principles should be considered first. Application of the other
principles depends on the context of the design, but an understanding of the issues
involved is clearly necessary and the current Principles hyperdocument is designed to
offer advice in the following way.

For each generic principle, a description and rationale is given. The principle is
illustrated with examples of general use in the areas of Hypermedia, Computer Supported
Co-operative Work (CSCW) and Communications Services Integration. Further
examples are given of the application of specific instances of the principles as relevant to
the design of a multimedia multiauthor document production (MMMADP) interface.
These are based on the case study in Multimedia Conferencing which served as a vehicle
for the development of much of the GUIDANCE work and which is illustrated in the
Tutorial.

The Tutorial contains information on how to use the GUIDANCE method, the Designer
Support Package and the Principles hyperdocument. It provides a Guided Tour to
introduce the user to navigation within and between the various elements of the design
tool, and to the contents of these elements. There are examples of the use of the
GUIDANCE method, the DSP and the application of the relevant Principles in the design
of the MMMADP interface referred to earlier. In its present form, the Tutorial functions
as a modified multimedia interactive on-line help facility, with navigation supported by
overview diagrams which continually update.

For operational reasons, the first prototype DSP was eventually implemented in Lisp on a
Macintosh IIcx with an A3 colour monitor. The early work on Principles and the Tutorial,
implemented in ToolBook, was modified to run in SuperCard 1.5. However, theoretical
work on the GUIDANCE project has tried to formalise the expression of usability
guidelines in a prescriptive manner, (Whitefield et al,1992). This implies the need for a
rule-base and the application of knowledge engineering within the design environment.
These in turn will place further demands upon the support offered to the designer via the

Principles hyperdocument and the Tutorial, and automatic transfer of data between the
instances of the different elements of the DSP will become highly desirable. Future
implementations of the DSP are expected to be PC-based and in a Windows environment.
This implies the use of ToolBook and Windows DDE or OLE links between the strands
of the DSP.

ToolBook as a component within an expert system learning environment.

There is no agreed definition of an expert system. Simplistically, it could be described as
a program that emulates a human expert, who may in turn be considered as someone who
is proficient in certain skills or knowledge. A more restrictive definition could be a
program which has a large knowledge base in a restricted, specialised field. This
knowledge base may be derived from one or more human experts, and the expert system
uses inferential reasoning to perform tasks for which a human expert would otherwise be
required.

XiPlus is a shell based expert system construction kit produced by Inference Corporation
and release 3.50 R0 is a recent version produced for Windows. Earlier versions of XiPlus
were not known for the friendliness of the user interface, and it was hoped that the
Windows version would be more intuitively usable. However, these expectations were
not realised. Since ToolBook provides an excellent means of designing interfaces, and
both ToolBook and XiPlus are designed to interface with other packages, one might
assume that combining the two would be productive.

Systems or products built under XiPlus are known as Applications, and all Application
filenames end in .APC. Code can be written to call XiPlus from within ToolBook, or
ToolBook from within XiPlus.

a) Script to load XiPlus from ToolBook, using a button.:
If the full path to the XiPlus executable code is not defined by the DOS path
command, it is necessary to include the full path name to the executable file for
XiPlus and the full file name for the XiPlus Application. This example assumes
that XiPlus for Windows is held in the C directory and that the Application is called
myexample

to handle buttonUp
run C:\XIPW\XI3.EXE myexample.APC
end buttonUp

b) Script to load ToolBook from XiPlus:
To call up ToolBook whilst running an XiPlus instance, it is necessary to write code
into the text file of the knowledgebase. Because XiPlus is an expert system
designed for backward chaining, it is necessary to build procedures into the

program's code which will trigger the desired commands. This can be achieved by
installing a condition in the rule base that checks to see if a given form has been
"done". "Doing a form" means that the system sends a preconstructed form to the
screen, the user completes it via the keyboard and, on exiting the form, the
necessary condition fires. In this example, the form is known as "details". There
are three rules shown below. The first fires if the details are unknown, and "does
the form"; the second fires when the details from the form are known and the
ToolBook application is not required; the third fires when it is required to get data
from "Mybook" within the ToolBook application.

if details are unknown

then do form details
and details are entered

if detail is somethingtrue
and evidence is some
then {do whetever is relevant}
and condition is known

if detail is somethingtrue
 and evidence is none
then report more investigation is needed
 and command save state result
 and command dos tbook.exe mybook.tbk
 and condition is known

As can be seen from the example, the interfacing between ToolBook and XiPlus requires
considerable understanding of the structure of the application language and is embroiled
in the semantics of the backward chaining rulebase. To date, only the transfer of control
has been solved; the transfer of information for use within the rulebase has, so far, proved
intransigent.

Conclusions

We have considered how ToolBook is currently being employed as a component or
element of the software toolkit used in an integrated environment. At its current stage of
development, Window's software allows real-time exchange of information between
applications using Dynamic Data Exchange and real time integration of information
between applications using Dynamic Link Libraries to store common code and to execute
common tasks. An exciting future development will be when one can call and run one
application actually within another, for example, by embedding the relevant icons and
then activating them. In this way, tunnelling through a number of applications should be
possible. This tunnelling through layers of applications seems to be permitted by the
draft specifications released for OLE 2.0, but the Microsoft guidelines do not advise this
practice, (Andrews, 1993). However, there are still problems with OLE and one can

have automatically updated linking, or unbreakable embedding, but not automatically
updated, unbreakable links. Further development of reliable dynamic linking really
awaits the coming of a new, object-oriented approach to the underlying operating system,
the promise of which is dangled in CAIRO the code name of the development project
being undertaken by Microsoft, (Anon, 1992).

References

Andrews, D. (1993) Microsoft Demonstrates OLE 2.0 BYTE's Essential

Guide to Windows, Spring 1993, p 22

Anon. (1992) CAIRO is Microsoft's Future. BYTE's Essential Guide to Windows,
Autumn 1992, p 13

Fosker, M. (1993) A Hypermedia Guide to JANET. BSc Project Dissertation, University
of Portsmouth.

Fountain, A., Hall, W., Heath, I. and Davis, H.(1990) MICROCOSM: An Open Model
for Hypermedia with Dynamic Linking. CSTR 90-12, University of Southampton.

Hardaker, M. (1993) The Exchange Mechanism. Windows User. May, 1993, pp 143-146.

Lent, A. (1993) Workgroups By The Numbers. BYTE's Essential Guide to Windows,
Spring 1993, pp 32-35.

May, J., Byerley, P., Denley, I., Hill, B., Adamson, S., Paterson, P. and Hedman, L. (in
press) The Enabling States Method. In: Byerley, P., Barnard, P. and May, J. (Eds)
Usability and Integrated Services: Design Issues and Methodology. Elsevier.

Schatzman, B.D. (1993) Next-Generation OLE. Byte. March 1993, pp 209-210.

Sommerville, I. (1989) Software Engineering, 3rd ed. Addison-Wesley. p3.

Wang, E. (1992) Usability Evaluation for Human-Computer Interaction. Thesis (PhD).
Lulea University of Technology, Sweden

Whitefield, A., Byerley, P., Denley, I., Esgate, A. and May, J.(1992) Integration of
services for human end-users (1): Design principles, enabling states analysis and a design
method. In: Byerley, P. and Connel, S. (Eds). Integrated Broadband Communications:
Views from RACE - Usage Aspects. North-Holland Studies in Telecommunication Vol
18. Elsevier.

